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ABSTRACT 

A finite difference procedure is utilized  for  the  solution of a coupled system of two  ordinary  differential  equations 
governing  the  time  averaged  quasi-gcostrophic  perturbations  in  the  atmosphere. The seasonal  changes  in  the  lati- 
tudinal  mean  state  are  found  to  introducc  important  phase  changes  and  reversals  in  the  asymmetric  meridional circu- 
lation. A hypothetical  latitudinal mean stability profile,  which  resembles many of the  latitudinal  tncau  stability 
profiles gencrally used in  analytical  studies, is found  to  give  acceptable  results  in  many cases. Barotropic  ~nodcls 
for  the zonal mean state are found  to be incapable of giving  acceptable  quantitative  results 

I. INTRODUCTION 
The  long-standing  debate on the  relative  importance 

of the  thermal  and  orographic influences in  maintaining 
the  stationary  zonally-asymmetric  perturbations of the 
atmosphere  cannot  yet  be  considered resolved despite 
much  theoretical effort on this subject. As is well known, 
the solutions of the linearized approsirnate  potential 
vorticity  equation for the  stationnry  zonally-:~symmetric 
state, which is the basis of most of the  theoretical cliscus- 
sions, are controlled not  only  by  the  assumed  distribution 
of the forcing due to the  thermal, orographic, and  trnnsient 
eddy effects, but also by  the assumed  form of the basic 
zonal mean  state,  rotation,  and  friction.  Even  when  the 
forcing functions  are  assumed to be explicitly  known, 
this  equation  in  its general  form  is not  separable  except 
under  certain  restrictive  assumptions  regarding  the zonal 
mean  state,  the Coriolis parameterf  and  its  variation  with 
latitude p. The  theoretical  studies  up t o  the  recent 
past  naturally fall into four  broad  groups,  depending on 
the  combination of, and assumptions tibout, the influencing 
frLctors considered  in  each  case. 
A. Research  in  ~vhich  the effect of forcing clue only t o  

I n  these  works,  some or all of the  variables of the  basic 
zonal mean  state  are generally  considered  either  constant 
or pressure  dependent  only. f and p are  taken as con- 
stants.  Friction is generally  considered.  Sometimes 
when an equivalent  burotropic or  two-level  baroclinic 
model is used, implicit  assumptions  are macle regarding 
the  variation of eyen the zonally aspnletric  perturba- 
tions  with pressure. Examples of studies in this  group 
are  Smagorinsky [26], Gilchrist [lo], Delisle and Harper 
[6] and DOOs [7].' 

heating is investigated. 

by  Mintz  [16]. Future   advanccs  sccm to  lie in  parametcrisations of this  kind. 
1 DoOs parametcriscd  one  part of the hca t ing   by  a hcating  function  similar  to that uscd 

B. Studies in which the effect of forcing due  to orograplly 

In these researches, the  treatment of the basic zonal 
Inem  state, f, p, and friction is similar  to that in the 
thermal case, and here also, implicit  nssumptions we 
usually made  uegarding  the  varintion of the zonally- 
asymmetric  perturbations  with pressure. Examples  are 
Queney [IS], Charney  and Elinssen [4], Bolin [3], Ganzbo 
[S, 91, hIngata [15], and K:Lwnta [12]. 
C.  Investigations in  which  attempts  are  made to study 

the  results of forcing due  to a con~bination of heating, 
orography,  and  transient  eddy effects, of different 
spatial scales. 

In these  studies, also, the treatment of the basic zonal 
mean state,f, 0, and friction  is  similar to that  in  the  above 
cases. No assumptions  are  made  regmding  the  variation 
of the  zonally-asymmetric  perturbations  with  pressure 
(e.g., Saltzman [ Z O ] ,  [21]). 
D. Researches in which  attention  is  locused  not  only on 

the forcing functions,  but also on the  latitudinal vari- 
ation off and Uo, the zonal mean east-west component 
of the  wind. 

Friction  is  not  considered  in  these  works. 111 some 
cases, mainly as a nmthematical expedient, barotropy, or 
in effect equivalent  barotropy, is forced  on the zonal  mean 
state or on both  the zonal mean  state  and  the  perturba- 
tions.  Examples of studies of this Bind are I h o  [14],2 
Staff Members,  Academia Sirlicn [27], and Barrett [I]. 

In  addition to these  theoretical  works, a great  number of 
published  diagnostic obserwtional  results  are  pertinent  to 
this problem.  Examples  are Sutcliffe [ZS ] ,  Hnurwitz and 
Craig [ll], Saltzman  and  Peixoto [23], Van Mieghern, 
Defrise, and Van Isacker [29], Clapp [51, Sdtzrnan a,nd 
Fleisher [22], and Saltzman  and Rao [24]. 

only is investigated. 

3 Though Kuo trcated a hornogencous  problem, his work fs of great importance for the  
question of forced perturbations 
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Even  when  the  components of the basic zond mean 
state nre taken as functions of pressure alone, the  analyti- 
cal  solution of the  resulting coupled system of ordinary 
differential equations  is  very  laborious  and  time  consum- 
ing.  Jntrodllction of realistic  zonal  mean  vertical profiles 
is  extremely difficult, if not impossible, in the usual 
analytical  methods. 1.t is  tlle  main  purpose of this paper 
to  demonstra,te a powerful  finite  difference  method  which 
not  only  reduces  the  labor  to an insignificant amount of 
computer  time,  but also opens  new  possibilities for many 
kinds of numerical  experimentation. As  examples,  some 
interesting  results will dso  be discussed. 

2. APPROXIMATE  EQUATION  GOVERNING  THE  TIME 

TIONS OF THE ATMOSPHERE 
AVERAGED  AXIALLY  ASYMMETRIC  PERTURBA- 

We  adopt  tlle  notation of Sdtzman [21] except for the 
following  changes: x*, y*, X, Y ,  Q, IT, and  the  subscript 6 
of Saltzman,  are  replaced  here  by x, ?J, AAY, Ar, FI, (3 and 
the  subscript 6 ,  respectively. Also, we further define 

D* =D-D, 
- 

K= r-1 

x= Lx 
Y= L?J 

t = l ) / l ) s  

where 

D =any dependent  variable 
L=any scaling 1engthfO 
ps=any scaling pressureZ0. 

With  the use of the  above  notation,  the  approximate 
nondimensionalised  equations goyerrring the time-averaged 
:Lxially asymmetric  perturbations of the  atmosphere,  along 
with  the  top  and  bottom  boundary  conditions,  in  the X ,  
Y ,  and .$ system,  assume  the  form  (Saltzman [21]). 

In  the S and Y directions, we assume  periodicity. 
Also here F*, N* , and h* , which  denote  the nxially 
asymmetric  manifestation of internal  and  external forcing 
functions, and y, 6, E ,  b,  d,  B, T, E, and N, which  denote 
the axially symmetric  state,  are  considered  given. 

3. MATHEMATICAL PROBLEM 

Given  the coefficients and forcing functions  in (I), 
( la)  , and ( 1  b),  the problem is to solve ( 1 )  with  periodicity 
conditions in the S a n d  Y directions,  while nt ET and .$b, (la) 
and (lb) hnve to be  satisfied respectively. Before  considering 
the  relaxation  tecln~ique  which  naturnlly suggests itself 
for such a problem, we should  note  that  the  lower  bound- 
nry  condition (1 b) contains :L second  dependent  variable 
u* which  can  be  written  in  terms of v* through  the geo- 
strophic  assumption.  Then (l), ( la) ,  and ( lb)  will be 
in  one  dependent  vuiable v* only, but  (lb) will be an 
integro-differentid  equation.  The  order  change  by  the 
introduction of the  geopotential will not solve the diffi- 
culties  completely,  because e i n  the zero order  term  in (I) 
is  usually positi,ue for most of the  earth’s  atmosphere. 
It is  found  that  under  these  circumstances  the  relaxation 
method crtnnot  be  applied to solve (1) with  its  above- 
mentioned  boundary  conditions  (Sankar-Rao [25]). Thus 
mostly for mathenlatical  expediency, we assume  that 

(Assumption 1) Uo=LTO(t), Ko=Ko((), bY=aY ( t )  bTo bTo 

~ + B V , + T  ($-s)=Eh*+iVH* bX at t=Eb (1b) and 

(Assumption 2 )  - - - constant where L 
1 bf 

Y = Y ( ~ ,  E ) = ( - L ’ Y ~ I K ~ ) / ~ ) ~ ~ R  so that y=y( t ) ,  6=6(.$), +=e(.$) while b,  (1, B, T, E, Nbecome 
constants.  Now  let us introduce b K ,  dK ,  BK, T ~ ,  E,, 
and NK to denote  the  new  constants b, (1, B, T, E, and N 
respectively. Also let E ,  e, and d represent y(.$), a(.$), 
and E ( . $ )  respectively.  With  this  notation, (I) ,   ( la) ,  and 
(lb) take  the form 
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where 
G*=(L2F*)/Uo. 

The simplified problem is now to solve (2) with  its 
prescribed boundmy  conditions. To  this effect, we can 
now use the  double  Fourier expansion method which  is 
equivalent  to  the  method of separation of variables. 

4. FOURIER  EXPANSION AND THE  RESULTING SYSTEM 
OF ORDINARY  DIFFERENTIAL  EQUATIONS 

Assuming that all the  time nverrlged  :lxitllly asymmetric 
dependent variables sihtisfy the  Dirichlet conditions,  we 
can  expand any such  dependent  variable D* as 

Here I m d  k are  the  lengths of the fnnd;Lmentd  region in 
X and Y directions respectively. m a,nd n are wave  num- 
bers. The subscripts m and n and  superscript E indicate 
that  the  Fourier coefficients are  functions of 7n, n ,  and i .  

Now  dropping  subscripts  m iLnd n, and  superscript .$ for 
convenience in  writing  and  substituting  espansions of the 
above  type  in  (2),  (2n),  and (2b)  we get  two coupled 
systems of ordinary differential equations  with E as the 
independent variable (after  writing u* in  terms of v* in 
(2b) through t,he geostrophic  npprosimntion) RS follows, 
for a single  harmonic: 

First  System 

( 3 a) 

(4b) 
Here 

Symbols  with  subscripts 1 >urd 2  refer to  the  Fourier 
coefficients, which :we functions of m, n, ihlld E ,  for  the 
respective  dependent variables. We  note  that  the 
coupling in  the  first  system comes through  the  friction 
term. 

Second System 
The second system  is exnctly similar  to  the  first;  the 

subscripts 3 and 4 replacing 1. and 2 respectively in the 
first  system. 

5. SOME  REMARKS 

We shnll  concern  ourselves with  the  first  system  only 
because the second system  is  extxtly  similar.  The  first 
system is generally  solved (Sn1sgorinsk.y [26], Saltzman 
[ Z O ] )  by making  further a d y t i c d  assumptions  regwding 
the coefficients, E ,  8, m d  A so that  the  resulting  second 
order  ordinary  differentid  equations con t i n  coefficients 
which are  linear  functions of the  independent varitlble 
and therefore  can :tlways be  transformed  to st:Lnd:Lrd 
confluent  hypergeometric  type of equations  (cf., Br .L t  emnn 
[a]', p. 249). At  this  point, we  shall depart from the 
nnalytical  approach and follow n finite difierence  method. 

We  note  that  the  equations ( 3 )  and (4) have a sitgular 
point at  the l e d  where U,,=O. Here v* can  be  many 
vdned. But in  the  red  atmosphere, such  singularities do 
not  esist ;~nd  v* remnins a single-valued function. A t  
such  places  wbere U0=O in  the  real  atmosphere,  other 
physical processes (neglected here),  like  virtual viscosity 
md  heat  conduction clue to molecular and small-scale eddy 
effects, become dominnnt.  However, a t  21 small but  finite 
distance from this  point,  the original equations c w  be 
expected to  hold. So, in  the neighborhood of the  point 
where Uo=O, we h v e  to use new equations,  td<ing  these 
ndditioml processes into consicleration. The  nature of 
these new equations will be different and  the poinl; where 
U,=O becomes a, regular  point. I n  this wily, the difficulty 
with  the  singularity has been circumvented  in  previous 
nndytical  studies (Kuo [13, 141: DeLisle  and  Harper [SI). 
'I :n  the  numerical  procedure  to  be described here we do not 
perform cdculations  in  the neighborhood of this  singular 
point. TILLIS, in effect, we assume  continuity of d l  the 
mriables  mross  this  singular  point. In this  way, we 
force regulurity  on  this  point. By using fine  enough 
mesh,  we  can expect  to confine the error introduced by this 
procedure  to a small neighborlmod of this point. In  this 
context,  the  author feels it  important  to  study in  the 
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future,  by  this  method,  some of the  related  analytical vl(~l==ElN(j).v,(j+l)+FlN(j) 
works,  e.g.,  DeLisle  and  Harper [6]. Thus, for this finite 
difference  scheme, we s l d l  assume that ~z(j)=E2N(j).~i(j+l)fF2N(j) 

(Assumption  3) No point of the finite  difference 
lattice for the region  considered  coincides  with a 

where 

E I N  ( j )=  -A2N(Jl singular  point. [B1N(j)+CON(j)*ElN(j-1)] (5.1) 

6. FINITE  DIFFERENCE  METHOD OF SOLUTION 

The  fundamental difficulty in  applying  the  finite dif- 
ference technique  to solve the  system (1) is  the coupling, 
which  cannot  be  broken  up  by  simple  addition  or  sub- 
traction.  The  first  method,  naturally  suggesting  itself, 
is  to  take  an  arbitrary v2 and solve  for vl from (3 ) ,  @a), 
ant1 (3b)  and  take  that v1 and solve  for a new v2 from (4), 
(4a), and (4b) and  to  repeat  this process until we arrive a t  
stationary values of v1 and vz. There is no  guarantee  that 
such a process will lead to  convergence  unless  we  are  able 
to prove it by  numerical  analysis.  A  superior  method 
which  takes  advantage of the  fact  that  the upper boundary 
conditions  are  not coupled, will be described now. I n  this 
context we shall  introduce  multiple  letter  symbols  which 
are  like  FORTRAN  floating  point  variables. 

A. THE  FINITE  DIFFERENCE  INTERIOR  EQUATION 

The  centered difference equation  corresponding to  (3)  
can be  written at   any grid point j as (fig. 1) 

E2N(j)= -A2N(j) 
[B1N(j)+CON(J]*E2N(j"1)] (6.1) 

I n  order to  get ElN(l) ,   FlN(I) ,   E2N(1) ,   and  F2N(l)  
which  are  necessary  to  calculate ElN(j),  FIN($,  E2N(j), 
and  F2N(j)  from  (5.1),  (5.2),  (6.1),  and  (6.2), we intro- 
duce  the  boundary  condition a t  ET. 

B. A P P L I C A T I O N  OF THE UPPER B O U N D A R Y   C O N D I T I O N  

To introduce  the  boundary  conditions  in  finite differ- 
ence  form, we will assume  that, 

(Assumption 4) The  dependent  variables v1 and 
v2 are  continuous across the  boundaries at 
tT and tb so that  the  interior  equation as well as 
the  boundary  conditions  are  to  be fulfilled at  
j=l  and a t  j=J. 

With  this  assumption, we can now introduce  fictitious 
points at j = O  and j =  J+1 (see fig. I ) .  If we  write 
the upper boundnry  condition at j=1 in the  centered 
difference form  and  require  that  the  iterative  type of 
equations ( 5 )  and (6) must  hold for any  member of the 
family, we get 

where 

and D(j)=vrLl.lue of any  dependent  variable D a t  j .  F I N  (1)= 
Here,  without  any loss of generality, we assumed that 

[DFN(1)-CON(I)*HIN] 
[BIN (1)-CON (l) .GlN] (5a.2) 

t is  decreasing from 1 to J. 

sim  ilarly as 
The  centered difference equation  for (4) is  written 

A2N(j)~2(j+l)+BlN(~~.~2(j- l )+CON(j) .~2(j)=EFN(j)  
(6) 

Nom we consider a one  parameter  family of solutions for 
v1 and v2 whicll are of the  iterative  type  (Richtmyer 
1191, P. 103), 

F2N (I)= [EFN (1)-CON (I)-H2N] 
[BlN(l)"CON (1).G2N] (6a.2) 
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write  the  boundary  condition at J in  the  finite difference 
form. Thus we get 

[AZN(J) +CON(J)]V~(J-I)+[B~~\~~(J)+A~I\~(J) 
* gLIN] . v~(J ) - [DFN(J )+A~N(J )  * hLlN] 

+A2N(J) * FRN(J) * v ~ ( J ) = O  (56) 

[AZN(J)+CON(J)]V~(J-~) +[BlN(J) 
+ABN(J) * gLLSN] . v ~ ( J ) - [ E F N ( J ) + A ~ N ( J )  

. hL2N]-A2N(J)  FRN(J) * v ~ ( J ) = O  (6b) 

a t  j=  J 

'5b) and (6b), 

v ~ ( J - ~ ) = E ~ N ( J " ~ )  . v1(J)+FlW(J-1) (5b.l) 

~(c7-1) =E2N(J"1) * v ~ ( J )  +F2N(J- l )  (6b.l) 

Now substituting  (5b.l)  and  (6b.l)  in (5b) and (6b) we get 

S4N  vz(J)+S5N+S6N * v ~ ( J ) = O  (Gb.2) 
where 

S lN=[A2N(J)   .E lN(J- I )+CON(J)   *ElN(J-1)  
+BIN(J)  +A2N(J) * gLlN] 

S2i\'=[A2N(J) FlN(J-l)+CON(J) . FlN(J-1)  

5 =  

I 
+ Fictitious point j = J + 1 -DFN(J)  -A2N(J) . hLlN] 

FIGURE 1 ."Finite  difference  scheme. S3N=+[A2N(J) * FRN] 

S4N=[A2N(J) . E2N(J-I)+CON(J) * E2N(J-1) 

From-  (5.1),  (5.2), (6.1), (6.2) and  (5a.l), (5% 2), (Ga.l),  +B1N(J)+A2N(J) - gL2N] 
(6tt.2) we  can  inductively  calculate EIN(j) ,   E2N(j),  
FlN(.j), and  F2N(j)  in  order of increasing j (.j=l, 2, S5N=[A2N(J) * F2N(J"1)+CON(J) . F2N(J"l)  

" - 
3 . . . J-1).  Now  we  use the lower boundary  condition -EBN(J) - A2N(J) 9 hL2N] 
to  get s ( J )  and v2(J). 

SBN=-[ABN(J) * FRN] 
C. APPLICATION  OF  THE  LOWER  BOUNDARY  CONDITION 

As in the case of upper  bounda.ry  condition, we invoke 
D. FINAL  PHASE  OF  THE  FINITE  DIFFERENCE  SOLUTION 

Assumption 4, introduce a fictitious  point a t  J+l, and  From (5b.2) and (6b.2) we can  very easily obt& v1 
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( J )  and u2 (J) by  direct  elimination.  After  obtaining 
v l ( J )  and s ( J )  we use ( 5 )  and (6) to  calculate vl ( j )  and 
v2( j )  inductively  in  the decreasing order of j ( j =  J-I, J-2, 
. . . 4, 3, 2, 1). Thus we arrive at  the complete  solution. 

7. S O M E   C O M P A R A T I V E  RESULTS 

For comparison purposes, we take  Saltzman's [20] 
model,  for which  some results were  published. Finite 
difference solutions for wa.ve number  (m,n)=(3,0)  are 
obtained.  Figure 2 shows the solution for  heating  with 
friction while figure 3 gives the  solution for mountain 
with  friction. It should  be  noted  that  the origin of 
figure 2 corresponds to 45" longitude  in  Saltzman's 
figure.  This  is so because the  heating  maximum  in 
figure 2 is at  the origin, while i t  is  placed a t  45" longitude 
in  Saltzman's figure (see corrigenda [20]). Here  the grid 
spacing  is  arbitrarily  ta,ken as 5 mb.  Experimentation 
with different grid  spacings  is  contemplated.  The  time 
taken  by  the IBM-7090 is less than a minute  for one 
solution  for 'u*, with all the  related fields such  as T* , a*, 
and k*. The  agreement, a t  least for this  type of atmos- 
pheric  problem  can be considered very  satisfactory.  The 
results  with  the second  model of Saltzman [21] were 
equally successful but  are  not published here. 

8. S O M E   E X P E R I M E N T A L  RESULTS 

Only  the  results of a few experiments will be discussed 
here. No attempt will be  made, a t  present., to  construct 
a general theory. 

A. TOP  BOUNDARY  CONDITION 

From figure 2 ,  we  can  see that  with LL.* T=O as the  top 
boundary condition, we get  very  large  perturbations a t  
the  upper  boundary  for  certain harmonics. If the  top 
boundary  condition  is  changed  to V * ~ = O ,  which  can be 
easily done  in  this  numerical scheme,  figure 4 is  the 
result.  Everything else is  held the  same as in figure 2. 
It is found  that  though  this  change  in  the  upper  boundary 
condition had  an insignificant effect on  the lower tropo- 
spheric  perturbations,  the values obtained for levels 
above 50 mb.  appear  to  be  more reasonable. So for d l  
t'he  remaining  experiments  the  top  boundary  condition is 
taken as w T = O .  

6. INFLUENCE  OF  THE  SEASONAL  CHANGE IN THE ZONAL 
MEAN STATE ON THE  TOPOGRAPHICALLY  FORCED PER- 

TURBATIONS 

To study  the effect of zonal mean  state clmnge on the 
perturbations,  produced by  the  mountains, we take  the 
following data: 

L=8.333 x lo7 cm. 
1=36 
k=9 
g=980 cm. set.-' 

&=2.87X1O6 cm." see.? deg." 
e,= 1 .0OX lo7 cm.' sec.-2 deg." 

C=1.6X1O4 CUI. 
p,=lOOO mb. 
pb=900  mb. 
p , = 5  mb. 

hl=2x104 cm. 

p,=1.2x10-3g1~~. CIIL-~  
H* = O  

Also the values of KO, bTo/bY, and Uo utilized here are given 
in  table 1. At 30"N. and 60"N. the Uo values at   the lower 
boundary  are  arbitrarily  taken as 1 m. sec." both  in 
winter  and  summer (because it is not still clear  how far we 
can trust  the  observational 900-mb. values a t  these 
latitudes).  At 45"N., the Uo values at  the lower boundary 
are  taken  as 2 .5  m. sec." and 4.5 m. sec.", for  summer 
and  winter  respectively, which appear  to agree with  the 
observations. f a n d  p values are  taken  to correspond to  the 
latitude  under  consideration. I n  all  these figures cor- 
responding to  mountain  with  friction cases, the  atmos- 
pheric  troughs  and ridges  show a slight  shift  from  the 
topographic  troughs  and ridges. 

Figures 5 to 10 give the  solutions  for (m, n)= (3,O) a t  
different latitudes.  The changes in the intensity of 
circalntion and  the position of the nodes are of interest  in 
this  type of study. It is to  be  noted  that  at 30'N. and 
60"N. the node  appears a t  a  lower pressure  in  winter  than 
in  summer.  At 60°N., this  results  in a reversal of phase 
even a t  500 mb. from  one  season to  the  other.  The 
analytical  studies generally have  restrictions  on KO 
though  they  may  be different for  troposphere  and  strato- 
sphere. T o  study  the effect of this, a hypothetical KO 
(table 1, col. l), which has constant d u e s  in  the  tropo- 
sphere  and  stratosphere  with a linear  variation between 
300 and 100 mb., is  taken.  This KO is  used a t  all the 
latitudes  for  both  the seasons  keeping everything else the 
same.  Figures 11-16 show the  results which are self- 
explanatory.  From  these, we can  conclude that for A 

quantitative  theory of the  stationary zonally asymmetric 
perturbations,  the  hypothetical  vertical  structure of the 
zonal mean  stability  is a good approximattion  in  many cases. 
However,  for 30"N. in  the  summer  and  for 60"N. in  the 
winter,  there  are significant  discrepancies,  especially in 
the  upper  atmosphere  above  the 200-mb.  level. Also in 
all  these cases, one  can see that  the  perturbations  attain 
their maximum amplitudes  near  the  stratosphere. 

I n  order  to  get a rough  qualitative  explanation of 
these  results,  let 11s consider the following analogies. 
Equations ( 3 )  and (4) in this  problem of forcing due  to 
the  moutains  are  similar (if 8, 8, and (A-v2) remain 
positive constants  and if the  time axis is  replaced by 
the axis)  to  the  equations expressing the  free  vibrations 
of a  weight of mass Z, attached  to a spring  having  an 
elastic  constant (A"*), in a viscous medium  with a 
damping  constant 8. (We could also suggest  anelectrical 
anaIog~7 of a discharging condenser with a capacity of 
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FIGURE 2." solution  in 111. scc.-I for 
Saltnnan's [2O] model. Hcating  with 
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F,GURE 3.-v* solution i n  111. s(:c.-~  for 
Saltzn~an's [2O] model. l\lountain with 
friction case. (m,n) = (3,O). w* = 0 a t  
thc  top. 

FIGURE 4.-v* solution i n  111. scc." for 
Saltznlan's [2O] modcl. Hcating  with 
friction case. ( q n )  = (3,O). v* = 0 a t  
the  top. 

the  boundary conditions. By virtue of the bound:rry con- 
dition c1.t [=ET the origin is a node in this  problem. I n  
the  spring  analogy,  the Inass is  nt  rest  initially. So we 
can  expect t~ maximum  amplitude of v* to occur >it some 
distance  from  the  origin.  This "distance" (or in our 
analogy,  the  interval")  depends on the coefficients and 
the  boundary  condition at  the  other  end. In this  atmos- 
pheric  problem,  this  point  happens  to  be,  in  many ctrses, 
near the  tropopause. As .$ incremes,  the  perturbations 
are  damped  out,  as suggested by  our  analogy. (A-v") 

11 

(A-v*)-l, through tin inductsnce ," and a resistance e.) 
Jn the titrnosphere, for certtbin planetary scales of motion 
(e.g. (m, n)=(3, 0 ) ) ,  the coefficient A-v' is positive, 
though  not a constant. Besides, the coefficients E ,  and 
8 are generally  positive,  though not consttants, in  the 
atmosphere. Thus for these scales of motion, falling 
back  on  the  analogy suggested above, we C R ~  expect 
damped  harmonic oscillations of *vl in [. This means  for 
these  scdes  it is possible to hive nodes  for n+ with respect 
to [, the  number again depending on the coefficients and 

TABLE l .-Valz~es of KO, aTo/ay, and, Uo utilized.  Here, KO i s  in lo1 CGS, aTo/ay ,is in 10-2 CGS, Uo i s  in 102 CGS. W stands  for  winter,  
S for stunmer, H Y P  for  hypothetacal  values, p for  pressure in nrb. Up to 100-mb. level, KO and a,To/dy valztes for  summer  and  winter  were 

.for the  use of centered  differencing.  Above 10O-n~b. level,  these  values  are  hypothetical. 
computed f rom Peixoto's [ l 7 ]  standard-level  data,  assunring  linear  variation  between  the  neighborzng  points  for  which  the  data  are  available 
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becomes  negative,  when the horizont~al  advection of 
relative  vorticity  dominates over the 0 advection  term. 
I n  this  case,  depending on the  other coefficients, the 
solution  can  become  exponential  and we cannot  expect 
any nodes. For  certain scales of motion,  this  happens 
to  be  the case. The  point  in  the  wave  number  space  at 
which  this  switch  occurs  is  close to  the  quasi-resonant 
point.  The  solutions  exhibit  a  sudden  change in character, 
while  crossing  this  quasi-resonant point. 

Now we shall go back  to the discrepancies  for 30’ N. 
for  summer  and 60’ N. for winter.  For 60’ N. in  winter, 
the KO value a t  to  is  much  smaller  than  the  hypothetical 
KO value a t  &,. This  induces  greater forcing at  the 
boundary  and  this  may  be  the reason  for large discrep- 
ancies in  the  upper regions. For 30’ N. in summer, no 
such  obvious  explanation  can  be  given. In  this  context, 
the  author feels that  many more  experiments  can  be 
designed  to  answer certain specific interesting  questions. 

Figures 17 and 18 show the  results for (m, n)=(3, 1) 
a t  45’ N. Significant  phase  cha.nges  from  one  season  to 
the  other a t  all  levels are  the  interesting  features of these 
figures. This can happen if the  wave  number falls on one 
side of the  quasi-resonant  frequency  in  one  season  and  on 
the  other  side  in  another season  (cf.,  Gilchrist [lo]). 

To investigate  the  acceptability of the  barotropic  or 
equivalent  barotropic  theories,  a  uniform  current,  with 
the 500-mb.  zonal  mean  velocity a t  45O N. corresponding 
to  the season  considered,  is introduced.  The forcing  is 
kept  the  same  by  adjusting  the  mountain  height.  The 
results for (m, n)=(3, 0) are given in figures 19 and 20. 
For (m, n) = (3, I ) ,  the  results  are given  in  figures 21  and 
22. It cttn be  inferred  that  the  barotropic  or  equivalent 
barotropic theories  can  give  only qualitative  results even 
a t  the 500-mb.  level  for (m, n)=(3, 1). At  least  for  some 
important scales, they seem  to be  incapable of giving ac- 
ceptable  results. Also, from  figures 21 a,nd 22 we can 
infer,  from  the  vertical  structure of the response, that  the 
wave  number (3, 1) falls  on  either  side of the qunsi- 
resonant  frequency  according  to  the  season,  giving  rise  to 
a 40’ phase  change. 

9. SOME CONCLUDING COMMENTS 

The  results  here show the  importance of the vertical 
structure of the zonal  mean state  and  the scale of the 
perturbations  and,  therefore,  have  an  important  bearing 
on the  numerical modeling of the atmosphere.  Before 
trying  to  construct a quantitative  theory in a spherical 
geometry, i t  will be of great  interest  to  experiment  with 
different  kinds of heating  functions.  Above  all, we should 
keep  in  mind that  the nonsepara,bility of (l), the com- 
plexity of the lower boundary  condition,  and  our  ignor- 
mce  regarding  the  verticd  structure of the  perturbation 
heating  function,  are  the  formidable  impediments in the 
way of constructing  a  quantitative  linear t.heory. 
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